Modelling and measuring the spectral bidirectional reflectance factor of snow-covered sea ice: an intercomparison study

نویسندگان

  • Shusun Li
  • Xiaobing Zhou
چکیده

Broadband albedo is a very important geophysical parameter in the Earth surface–atmosphere interaction in either global climate change or hydrological cycle and snowmelt runoff studies. To derive the broadband albedo accurately from satellite optical sensor observation at limited bands and at a single observation angle, the bidirectional reflectance factor (BRF) has to be specified quantitatively. In the present albedo derivation algorithms from the satellite radiance data, the BRF is either modelled or observed. Questions may arise as to how well a BRF model can be in the broadband albedo derivation. To help answer such questions, we studied the performance of a snow-surface BRF model for two specific cases under large solar zenith angles (65° and 85°). We measured snow-surface spectral directional reflectance under clear skies. The snow physical properties, such as snow grain size and snow density, at the same sites were also measured. In situ snow physical data are used to simulate the snow-surface BRF and hemispherical directional reflectance factor (HDRF) through a multilayered azimuthand zenith-dependent plane-parallel radiative transfer model. The field measurements and BRF and HDRF simulations all reveal the forward-scattering nature of snow surface under large solar incidence angles, but the BRF model results depict the strongest forward-scattering patterns under such solar zenith angles. Because the HDRF is simulated through coupling of the surface BRF with radiative transfer in the atmosphere, the resulting HDRF patterns agree with the field measurements better than the simulated BRF does. The deviation of the simulated HDRF from field-based clear-sky directional reflectance (FCDR) is within š10% for the central (viewing zenith angle <45°) and lateral sides of the viewing hemisphere. This level of agreement between the simulated HDRF and FCDR also implies that the simulated BRF model can provide remote-sensing estimates of spectral albedo with an uncertainty of š10% for the same part of the viewing hemisphere. Further improvement in BRF model performance requires better handling of single scattering properties of snow grains, surface roughness, and atmospheric correction. Also, better procedures and techniques in field measurement are necessary for more accurate assessment of the performance of BRF models. Copyright  2004 John Wiley & Sons, Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New methods to infer snow albedo from the MISR instrument with applications to the Greenland ice sheet

Snow-covered surfaces have a very high surface albedo, thereby allowing little energy to be absorbed by the snowpack. As the snowpack ages and/or begins to melt, the snow albedo decreases and more solar energy is absorbed by the snowpack. Therefore, accurate estimation of snow albedo is essential for monitoring the state of the cryosphere. This paper examines the retrieval of snow albedo using ...

متن کامل

Comparison between in situ and MODIS-derived spectral reflectances of snow and sea ice in the Amundsen Sea, Antarctica

The spectral albedo and directional reflectance of snow and sea ice were measured on sea ice of various types, including nilas, grey ice, pancake ice, multi-year pack ice, and land-fast ice in the Ross, Amundsen and Bellingshausen seas during a summer cruise in February through March 2000. Measurements were made using a spectroradiometer that has 512 channels in the visible and near-infrared (V...

متن کامل

The effect of anisotropic reflectance on imaging spectroscopy of snow properties

How does snow’s anisotropic directional reflectance affect the mapping of snow properties from imaging spectrometer data? This sensitivity study applies two spectroscopy models to synthetic images of the spectral hemispherical–directional reflectance factor (HDRF) with prescribed snow-covered area and snow grain size. The MEMSCAG model determines both sub-pixel snow-covered area and the grain s...

متن کامل

Projected decline in spring snow depth on Arctic sea ice caused by progressively later autumn open ocean freeze - up this century

We present the first analysis of snow depths on Arctic sea ice in the Coupled Model Intercomparison Project 5 (CMIP5) because of its importance for sea ice thermodynamics and ringed seal (Phoca hispida) habitat. Snow depths in April on Arctic sea ice decrease over the 21st century in RCP2.6, RCP4.5, and RCP8.5 scenarios. The chief cause is loss of sea ice area in autumn and, to a lesser extent,...

متن کامل

Analysis of Arctic clouds by means of hyper-spectral satellite

Polar satellite measurements provide frequent overpass on the Arctic area and high spatial resolution, but the cloud parameter retrieval and their detection is very difficult at high latitudes. In great part the Arctic surface is covered by snow and ice, reducing the visible contrast between clouds and the surface. Also, often there are strong surface temperature inversions and during the winte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004